An investigation into the machining characteristics of titanium using ultrasonic machining

نویسندگان

  • Jatinder Kumar
  • Ajay Kumar Garg
  • S. K. Mohapatra
چکیده

This paper presents a review on the problems encountered in machining titanium and application of USM in machining titanium and its alloys. Experiments have been conducted to assess the effect of three factors-tool material, grit size of the abrasive slurry and power rating of ultrasonic machine on machining characteristics of titanium (ASTM Grade I) using full factorial approach for design and analysis of experiments. It has been concluded that all factors have significant effect on Material Removal Rate (MRR), Tool Wear Rate (TWR) and surface roughness of the machined surface. Two-way interactions having significant effect on MRR, TWR and surface roughness have also been identified using Minitab14 software. The levels for each factor that contribute the most to the variation in machining performance of USM of titanium have also been established. It has been concluded that titanium is fairly machinable with USM process. Moreover, the surface finish obtained is better than many of the other non-traditional processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Statistically Controlled Machining Solutions of Titanium Alloys Using Usm

The purpose of the present investigation is to compare the statistically controlled machining solution of titanium alloys using ultrasonic machining (USM). In this study, the previously developed Taguchi model for USM of titanium and its alloys has been investigated and compared. Relationships between the material removal rate, tool wear rate, surface roughness and other controllable machining ...

متن کامل

Development of Design and Manufacturing Support Tool for Optimization of Ultrasonic Machining (USM) and Rotary USM

Ultrasonic machining (USM) is a mechanical material removal process used to erode holes and cavities in hard or brittle work pieces by using shaped tools, high-frequency and an abrasive slurry. This paper addresses the concept and development of an expert system (ES) for hard and brittle material, such as glass, quartz, diamond, carbides, semi conducting materials, ceramic and graphite which ca...

متن کامل

Cutting temperature in rotary ultrasonic machining of titanium: experimental study using novel Fabry-Perot fibre optic sensors

Titanium has a wide variety of applications, particularly in the aerospace industry. However, because of its low thermal conductivity and high strength, machining of titanium is very difficult. The heat generated in machining can dramatically shorten the tool life. Rotary ultrasonic machining (RUM) is a non-traditional machining process, and has been used to machine various difficult-to-machine...

متن کامل

An Experimental Study on Ultrasonic Machining of Pure Titanium Using Designed Experiments

In the present research work, the effect of several process parameters on the machining characteristics of pure titanium (ASTM Grade-I) has been reported. The machining characteristics that are being investigated are tool wear rate and the quality of the machined surface in terms of the surface finish. The mechanism of material removal was has also been correlated with the machining conditions....

متن کامل

Development of Design and Manufacturing Support Tool for Optimization of Ultrasonic Machining (USM) and Rotary USM

Ultrasonic machining (USM) is a mechanical material removal process used to erode holes and cavities in hard or brittle work pieces by using shaped tools, high-frequency and an abrasive slurry. This paper addresses the concept and development of an expert system (ES) for hard and brittle material, such as glass, quartz, diamond, carbides, semi conducting materials, ceramic and graphite which ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008